The v-number of binomial edge ideals

Show simple item record

dc.contributor.author Balu, Ambhore Siddhi
dc.contributor.author Saha, Kamalesh
dc.contributor.author Sengupta, Indranath
dc.coverage.spatial United Kingdom
dc.date.accessioned 2024-07-11T15:27:48Z
dc.date.available 2024-07-11T15:27:48Z
dc.date.issued 2024-07
dc.identifier.citation Balu, Ambhore Siddhi; Saha, Kamalesh and Sengupta, Indranath, "The v-number of binomial edge ideals", Acta Mathematica Vietnamica, DOI: 10.1007/s40306-024-00540-w, Jul. 2024.
dc.identifier.issn 0251-4184
dc.identifier.issn 2315-4144
dc.identifier.uri https://doi.org/10.1007/s40306-024-00540-w
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/10216
dc.description.abstract The invariant v-number was introduced very recently in the study of Reed-Muller-type codes. Jaramillo and Villarreal (J. Combin. Theory Ser. A 177:105310, 2021) initiated the study of the v-number of edge ideals. Inspired by their work, we take the initiation to study the v-number of binomial edge ideals in this paper. We discuss some properties and bounds of the v-number of binomial edge ideals. We explicitly find the v-number of binomial edge ideals locally at the associated prime corresponding to the cutset θ. We show that the v-number of Knutson binomial edge ideals is less than or equal to the v-number of their initial ideals. Also, we classify all binomial edge ideals whose v-number is 1. Moreover, we try to relate the v-number with the Castelnuvo-Mumford regularity of binomial edge ideals and give a conjecture in this direction.
dc.description.statementofresponsibility by Ambhore Siddhi Balu, Kamalesh Saha and Indranath Sengupta
dc.language.iso en_US
dc.publisher Springer
dc.subject v-number
dc.subject Binomial edge ideals
dc.subject Castelnuovo-Mumford regularity
dc.subject Initial ideals
dc.subject Completion set
dc.title The v-number of binomial edge ideals
dc.type Article
dc.relation.journal Acta Mathematica Vietnamica


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account