Derivation module and the Hilbert-Kunz multiplicity of the coordinate ring of a projective monomial curve

Show simple item record

dc.contributor.author Bhardwaj, Om Prakash
dc.contributor.author Sengupta, Indranath
dc.coverage.spatial United States of America
dc.date.accessioned 2024-08-09T10:31:54Z
dc.date.available 2024-08-09T10:31:54Z
dc.date.issued 2024-06
dc.identifier.citation Bhardwaj, Om Prakash and Sengupta, Indranath, "Derivation module and the Hilbert-Kunz multiplicity of the coordinate ring of a projective monomial curve", Rocky Mountain Journal of Mathematics, DOI: 10.1216/rmj.2024.54.689, vol. 54, no. 3, pp. 689-701, Jun. 2024.
dc.identifier.issn 0035-7596
dc.identifier.uri https://doi.org/10.1216/rmj.2024.54.689
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/10297
dc.description.abstract Let n0, n1,…,np be a sequence of positive integers such that n0<n1<⋯<np, gcd (n0,n1,… ,np)=1. Let S=⟨(0,np),(n0,np−n0),…,(np−1,np−np−1),(np,0)⟩ be an affine semigroup in N2. The semigroup ring k[S]is the coordinate ring of the projective monomial curve in the projective space Pp+1k, which is defined parametrically by x0=vnp,x1=un0vnp−n0,…,xp=unp−1vnp−np−1,xp+1=unp. In this article, we consider the case when n0,n1,…,np forms an arithmetic sequence, and give an explicit set of minimal generators for the derivation module Der k(k[S]). Further, we give an explicit formula for the Hilbert–Kunz multiplicity of the coordinate ring of a projective monomial curve.
dc.description.statementofresponsibility by Om Prakash Bhardwaj and Indranath Sengupta
dc.format.extent vol. 54, no. 3, pp. 689-701
dc.language.iso en_US
dc.publisher Rocky Mountain Mathematics Consortium
dc.subject Affine semigroup
dc.subject Derivation module
dc.subject Hilbert-Kunz multiplicity
dc.subject Numerical semigroup
dc.subject Semigroup ring
dc.title Derivation module and the Hilbert-Kunz multiplicity of the coordinate ring of a projective monomial curve
dc.type Article
dc.relation.journal Rocky Mountain Journal of Mathematics


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account