dc.contributor.author |
Bhardwaj, Om Prakash |
|
dc.contributor.author |
Sengupta, Indranath |
|
dc.coverage.spatial |
United States of America |
|
dc.date.accessioned |
2024-08-09T10:31:54Z |
|
dc.date.available |
2024-08-09T10:31:54Z |
|
dc.date.issued |
2024-06 |
|
dc.identifier.citation |
Bhardwaj, Om Prakash and Sengupta, Indranath, "Derivation module and the Hilbert-Kunz multiplicity of the coordinate ring of a projective monomial curve", Rocky Mountain Journal of Mathematics, DOI: 10.1216/rmj.2024.54.689, vol. 54, no. 3, pp. 689-701, Jun. 2024. |
|
dc.identifier.issn |
0035-7596 |
|
dc.identifier.uri |
https://doi.org/10.1216/rmj.2024.54.689 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/10297 |
|
dc.description.abstract |
Let n0, n1,…,np be a sequence of positive integers such that n0<n1<⋯<np, gcd (n0,n1,… ,np)=1. Let S=⟨(0,np),(n0,np−n0),…,(np−1,np−np−1),(np,0)⟩ be an affine semigroup in N2. The semigroup ring k[S]is the coordinate ring of the projective monomial curve in the projective space Pp+1k, which is defined parametrically by
x0=vnp,x1=un0vnp−n0,…,xp=unp−1vnp−np−1,xp+1=unp.
In this article, we consider the case when n0,n1,…,np forms an arithmetic sequence, and give an explicit set of minimal generators for the derivation module Der k(k[S]). Further, we give an explicit formula for the Hilbert–Kunz multiplicity of the coordinate ring of a projective monomial curve. |
|
dc.description.statementofresponsibility |
by Om Prakash Bhardwaj and Indranath Sengupta |
|
dc.format.extent |
vol. 54, no. 3, pp. 689-701 |
|
dc.language.iso |
en_US |
|
dc.publisher |
Rocky Mountain Mathematics Consortium |
|
dc.subject |
Affine semigroup |
|
dc.subject |
Derivation module |
|
dc.subject |
Hilbert-Kunz multiplicity |
|
dc.subject |
Numerical semigroup |
|
dc.subject |
Semigroup ring |
|
dc.title |
Derivation module and the Hilbert-Kunz multiplicity of the coordinate ring of a projective monomial curve |
|
dc.type |
Article |
|
dc.relation.journal |
Rocky Mountain Journal of Mathematics |
|