dc.contributor.author |
Cheri, P. V. |
|
dc.contributor.author |
Dey, Deblina |
|
dc.contributor.author |
Akhil K. |
|
dc.contributor.author |
Kotal, Nirmal |
|
dc.contributor.author |
Veer, Dharm |
|
dc.coverage.spatial |
Denmark |
|
dc.date.accessioned |
2024-12-05T06:51:36Z |
|
dc.date.available |
2024-12-05T06:51:36Z |
|
dc.date.issued |
2024-11 |
|
dc.identifier.citation |
Cheri, P. V.; Dey, Deblina ; Akhil K.; Kotal, Nirmal and Veer, Dharm, "Cohen-Macaulay permutation graphs", Mathematica Scandinavica, DOI: 10.7146/math.scand.a-149033, vol. 130, no. 03, pp. 419-431, Nov. 2024. |
|
dc.identifier.issn |
0025-5521 |
|
dc.identifier.issn |
1903-1807 |
|
dc.identifier.uri |
https://doi.org/10.7146/math.scand.a-149033 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/10811 |
|
dc.description.abstract |
In this article, we characterize Cohen-Macaulay permutation graphs. In particular, we show that a permutation graph is Cohen-Macaulay if and only if it is well-covered and there exists a unique way of partitioning its vertex set into r disjoint maximal cliques, where r is the cardinality of a maximal independent set of the graph. We also provide some sufficient conditions for a comparability graph to be a uniquely partially orderable (UPO) graph. |
|
dc.description.statementofresponsibility |
by P. V. Cheri, Deblina Dey, K. Akhil, Nirmal Kotal and Dharm Veer |
|
dc.format.extent |
vol. 130, no. 03, pp. 419-431 |
|
dc.language.iso |
en_US |
|
dc.publisher |
Mathematica Scandinavica |
|
dc.title |
Cohen-Macaulay permutation graphs |
|
dc.type |
Article |
|
dc.relation.journal |
Mathematica Scandinavica |
|