dc.contributor.author |
Amrutiya, Sanjay |
|
dc.contributor.author |
Dubey, Umesh |
|
dc.date.accessioned |
2015-11-24T16:12:48Z |
|
dc.date.accessioned |
2015-11-24T16:14:56Z |
|
dc.date.available |
2015-11-24T16:12:48Z |
|
dc.date.available |
2015-11-24T16:14:56Z |
|
dc.date.issued |
2015-10 |
|
dc.identifier.citation |
Amrutiya, Sanjay and Dubey, Umesh, “Moduli of equivariant sheaves and Kronecker–McKay modules”, International Journal of Mathematics, DOI: 10.1142/S0129167X15500925, vol. 26, no. 11, Oct. 2015. |
en_US |
dc.identifier.uri |
http://dx.doi.org//10.1142/S0129167X15500925 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/1974 |
|
dc.description.abstract |
We extend Álvarez-Cónsul and King description of moduli of sheaves over projective schemes to moduli of equivariant sheaves over projective Γ-schemes, for a finite group Γ. We introduce the notion of Kronecker–McKay modules and construct the moduli of equivariant sheaves using a natural functor from the category of equivariant sheaves to the category of Kronecker–McKay modules. Following Álvarez-Cónsul and King, we also study theta functions and homogeneous co-ordinates of moduli of equivariant sheaves.
Read More: http://www.worldscientific.com/doi/10.1142/S0129167X15500925 |
en_US |
dc.description.statementofresponsibility |
by Sanjay Amrutiya and Umesh Dubey |
|
dc.format.extent |
Vol. 26, No. 11 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
World Scientific |
en_US |
dc.subject |
Equivariant sheaves |
en_US |
dc.subject |
MacKay modules |
en_US |
dc.subject |
Kronecker-MacKay quiver |
|
dc.title |
Moduli of equivariant sheaves and Kronecker–McKay modules |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
International Journal of Mathematics |
|