On the bifurcation for fractional Laplace equations

Show simple item record

dc.contributor.author Dwivedi, Gaurav
dc.contributor.author Tyagi, Jagmohan
dc.contributor.author Verma, Ram Baran
dc.date.accessioned 2016-06-21T07:09:21Z
dc.date.available 2016-06-21T07:09:21Z
dc.date.issued 2016-06
dc.identifier.citation Dwivedi, Gaurav; Tyagi, Jagmohan and Verma, Ram Baran, “On the bifurcation for fractional Laplace equations”, arXiv, Cornell University Library, DOI: arXiv:1606.04452, Jun. 2016. en_US
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/2348
dc.identifier.uri http://arxiv.org/abs/1606.04452
dc.description.abstract In this paper, we consider the bifurcation problem for fractional Laplace equation (−Δ)su=λu+f(λ,x,u)in Ω,u=0in Rn∖Ω, where Ω⊂Rn,n>2s(0<s<1) is an open bounded subset with smooth boundary, (−Δ)s stands for the fractional Laplacian. We show that a continuum of solutions bifurcates out from the principal eigenvalue λ1 of the eigenvalue problem (−Δ)sv=λvinΩ,v=0inRn∖Ω, and, conversely. en_US
dc.description.statementofresponsibility by Gaurav Dwivedi, Jagmohan Tyagi, Ram Baran Verma
dc.language.iso en_US en_US
dc.publisher Cornell University Library en_US
dc.title On the bifurcation for fractional Laplace equations en_US
dcterms.type Pre- Print


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account