dc.contributor.author |
Sengupta, Indranath |
|
dc.contributor.author |
Roy, Achintya Kumar |
|
dc.contributor.author |
Tripathi, Gaurab |
|
dc.date.accessioned |
2016-11-02T10:47:00Z |
|
dc.date.available |
2016-11-02T10:47:00Z |
|
dc.date.issued |
2017-02 |
|
dc.identifier.citation |
Roy, Achintya Kumar; Sengupta, Indranath and Tripathi, Gaurab, “Minimal graded free resolutions for monomial curves in 𝔸4 defined by almost arithmetic sequences”, Communications in Algebra, DOI: 10.1080/00927872.2016.1175580, vol. 45, no. 2, pp. 521-551, Feb. 2017. |
en_US |
dc.identifier.issn |
092-7872 |
|
dc.identifier.issn |
1532-4125 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/2501 |
|
dc.identifier.uri |
http://dx.doi.org/10.1080/00927872.2016.1175580 |
|
dc.description.abstract |
Let m = (m0, m1, m2, n) be an almost arithmetic sequence, i.e., a sequence of positive integers with gcd(m0, m1, m2, n) = 1, such that m0 < m1 < m2 form an arithmetic progression, n is arbitrary and they minimally generate the numerical semigroup Γ =m0ℕ +m1ℕ +m2ℕ +nℕ. Let k be a field. The homogeneous coordinate ring k[Γ] of the affine monomial curve parametrically defined by X0 = tm0, X1 = tm1, X2 = tm2, Y = tn is a graded R-module, where R is the polynomial ring k[X0, X1, X2, Y] with the grading degXi: = mi, degY: = n. In this paper, we construct a minimal graded free resolution for k[Γ]. |
en_US |
dc.description.statementofresponsibility |
by Achintya Kumar Roy, Indranath Sengupta and Gaurab Tripathi |
|
dc.format.extent |
Vol. 45, no. 2, pp. 521-551 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Taylor & Francis |
en_US |
dc.subject |
Arithmetic sequences |
en_US |
dc.subject |
Betti numbers |
en_US |
dc.subject |
minimal free resolution |
en_US |
dc.subject |
monomial curves |
en_US |
dc.title |
Minimal graded free resolutions for monomial curves in 𝔸4 defined by almost arithmetic sequences |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Communications in Algebra |
|