dc.contributor.author |
Sharma, Vishakha |
|
dc.contributor.author |
Kour, Surjeet |
|
dc.date.accessioned |
2016-11-08T12:57:48Z |
|
dc.date.available |
2016-11-08T12:57:48Z |
|
dc.date.issued |
2017-02 |
|
dc.identifier.citation |
Kour, Surjeet and Sharma, Vishakha, “On equality of certain automorphism groups”, Communications in Algebra, DOI: 10.1080/00927872.2016.1175586, vol. 45, no. 2,Feb. 2017. |
en_US |
dc.identifier.issn |
0092-7872 |
|
dc.identifier.issn |
1532-4125 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/2523 |
|
dc.identifier.uri |
http://dx.doi.org/10.1080/00927872.2016.1175586 |
|
dc.description.abstract |
Let G = H×A be a group, where H is a purely non-Abelian subgroup of G, and A is a non-trivial Abelian factor of G. Then, for n≥2, we show that there exists an isomorphism ϕ:Autγn(G)Z(G)(G)→Autγn(H)Z(H)(H) such that ϕ(Autn−1c(G))=Autn−1c(H). Also, for a finite non-Abelian p-group G satisfying a certain natural hypothesis, we give some necessary and sufficient conditions for Autcent(G)=Autn−1c(G). Furthermore, for a finite non-Abelian p-group G, we study the equality of Autcent(G) with Autγn(G)Z(G)(G). |
|
dc.description.statementofresponsibility |
by Surjeet Kour and Vishakha Sharma |
|
dc.format.extent |
vol. 45, no. 2,pp .552-560 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Taylor & Francis |
en_US |
dc.subject |
Central automorphism |
en_US |
dc.subject |
class preserving automorphism |
en_US |
dc.subject |
finite group |
en_US |
dc.subject |
p-group |
en_US |
dc.title |
On equality of certain automorphism groups |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Communications in Algebra |
|