dc.contributor.author |
Dwivedi, Gaurav |
|
dc.contributor.author |
Tyagi, Jagmohan |
|
dc.contributor.author |
Verma, Ram Baran |
|
dc.date.accessioned |
2017-03-09T06:20:59Z |
|
dc.date.available |
2017-03-09T06:20:59Z |
|
dc.date.issued |
2017-01 |
|
dc.identifier.citation |
Dwivedi, Gaurav; Tyagi, Jagmohan and Verma, Ram Baran, “On the bifurcation results for fractional Laplace equations”, Mathematische Nachrichten, Wiley-VCH Verlag, DOI: 10.1002/mana.201600250, vol. 290, no. 16, pp. 2597-2611, Jan. 2017. |
en_US |
dc.identifier.issn |
0025-584X |
|
dc.identifier.issn |
1522-2616 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/2694 |
|
dc.identifier.uri |
http://dx.doi.org/10.1002/mana.201600250 |
|
dc.description.abstract |
In this paper, we consider the bifurcation problem for the fractional Laplace equation
(−)s
u = λu + f (λ, x, u) in ,
u = 0 in Rn \ ,
where ⊂ Rn , n > 2s (0 < s < 1) is an open bounded subset with smooth boundary, (−)s stands for the
fractional Laplacian. We show that a continuum of solutions bifurcates out from the principal eigenvalue λ1 of
the problem
(−)s
v = λv in ,
v = 0 in Rn \ ,
and, conversely. |
|
dc.description.statementofresponsibility |
by Gaurav Dwivedi, Jagmohan Tyagi and Ram Baran Verma |
|
dc.format.extent |
vol. 290, no. 16, pp. 2597-2611 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Wiley-VCH Verlag |
en_US |
dc.title |
On the bifurcation results for fractional Laplace equations |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Mathematische Nachrichten |
|