On the bifurcation results for fractional Laplace equations

Show simple item record

dc.contributor.author Dwivedi, Gaurav
dc.contributor.author Tyagi, Jagmohan
dc.contributor.author Verma, Ram Baran
dc.date.accessioned 2017-03-09T06:20:59Z
dc.date.available 2017-03-09T06:20:59Z
dc.date.issued 2017-01
dc.identifier.citation Dwivedi, Gaurav; Tyagi, Jagmohan and Verma, Ram Baran, “On the bifurcation results for fractional Laplace equations”, Mathematische Nachrichten, Wiley-VCH Verlag, DOI: 10.1002/mana.201600250, vol. 290, no. 16, pp. 2597-2611, Jan. 2017. en_US
dc.identifier.issn 0025-584X
dc.identifier.issn 1522-2616
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/2694
dc.identifier.uri http://dx.doi.org/10.1002/mana.201600250
dc.description.abstract In this paper, we consider the bifurcation problem for the fractional Laplace equation (−)s u = λu + f (λ, x, u) in , u = 0 in Rn \ , where ⊂ Rn , n > 2s (0 < s < 1) is an open bounded subset with smooth boundary, (−)s stands for the fractional Laplacian. We show that a continuum of solutions bifurcates out from the principal eigenvalue λ1 of the problem (−)s v = λv in , v = 0 in Rn \ , and, conversely.
dc.description.statementofresponsibility by Gaurav Dwivedi, Jagmohan Tyagi and Ram Baran Verma
dc.format.extent vol. 290, no. 16, pp. 2597-2611
dc.language.iso en_US en_US
dc.publisher Wiley-VCH Verlag en_US
dc.title On the bifurcation results for fractional Laplace equations en_US
dc.type Article en_US
dc.relation.journal Mathematische Nachrichten


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account