dc.contributor.author |
Tyagi, Jagmohan |
|
dc.contributor.author |
Verma, Ram Baran |
|
dc.date.accessioned |
2017-04-15T21:06:08Z |
|
dc.date.available |
2017-04-15T21:06:08Z |
|
dc.date.issued |
2017-04 |
|
dc.identifier.citation |
Tyagi, Jagmohan and Verma, Ram Baran, “Existence of solutions to fully nonlinear elliptic equations with gradient nonlinearity”, Taiwanese Journal of Mathematics, DOI: 10.11650/tjm/7974, vol.21,no.05, pp.3037-1056,Apr. 2017. |
en_US |
dc.identifier.issn |
1027-5487 |
|
dc.identifier.issn |
2224-6851 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/2852 |
|
dc.identifier.uri |
http://dx.doi.org/10.11650/tjm/7974 |
|
dc.description.abstract |
In this article, we study the existence and multiplicity of nontrivial solutions
to the problem
−
2F(x, D2u) = f(x, u) + ψ(Du) in Ω,
u = 0 on ∂Ω,
where Ω is a smooth bounded domain in R
n, n > 2. We show that the problem
possesses nontrivial solutions for small value of provided f and ψ are continuous and
f has a positive zero. We employ degree theory arguments and Liouville type theorem
for the multiplicity of the solutions. |
|
dc.description.statementofresponsibility |
by Jagmohan Tyagi and Ram Baran Verma |
|
dc.format.extent |
vol.21,no.05, pp.3037-1056 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Mathematical Society of the Republic of China |
en_US |
dc.title |
Existence of solutions to fully nonlinear elliptic equations with gradient nonlinearity |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Taiwanese Journal of Mathematics |
|