Frobenius number and minimal presentation of certain numerical semigroups

Show simple item record

dc.contributor.author Mehta, Ranjana
dc.contributor.author Saha, Joydip
dc.contributor.author Sengupta, Indranath
dc.date.accessioned 2018-02-25T12:09:38Z
dc.date.available 2018-02-25T12:09:38Z
dc.date.issued 2018-02
dc.identifier.citation Mehta, Ranjana; Saha, Joydip and Sengupta, Indranath, “Frobenius number and minimal presentation of certain numerical semigroups”, arXiv, Cornell University Library, DOI: arXiv:1802.02564v1, Feb. 2018. en_US
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/3483
dc.identifier.uri http://arxiv.org/abs/1802.02564v1
dc.description.abstract Suppose e≥4 be an integer, a=e+1, b>a+(e−3)d, gcd(a,d)=1 and d∤(b−a). Let M={a,a+d,a+2d,…,a+(e−3)d,b,b+d}, which forms a minimal generating set for the numerical semigroup Γe(M), generated by the set M. We calculate the Ap\'{e}ry set and the Frobenius number of Γe(M). We also show that the minimal number of generators for the defining ideal p of the affine monomial curve parametrized by X0=ta, X1=ta+d,…,Xe−3=ta+(e−3)d, Xe−2=tb, Xe−1=tb+d is a bounded function of e. en_US
dc.description.statementofresponsibility Ranjana Mehta, Joydip Saha, and Indranath Sengupta
dc.language.iso en en_US
dc.publisher Cornell University Library en_US
dc.title Frobenius number and minimal presentation of certain numerical semigroups en_US
dc.type Preprint en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account