dc.contributor.author |
Mehta, Ranjana |
|
dc.contributor.author |
Saha, Joydip |
|
dc.contributor.author |
Sengupta, Indranath |
|
dc.date.accessioned |
2018-02-25T12:09:38Z |
|
dc.date.available |
2018-02-25T12:09:38Z |
|
dc.date.issued |
2018-02 |
|
dc.identifier.citation |
Mehta, Ranjana; Saha, Joydip and Sengupta, Indranath, “Frobenius number and minimal presentation of certain numerical semigroups”, arXiv, Cornell University Library, DOI: arXiv:1802.02564v1, Feb. 2018. |
en_US |
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/3483 |
|
dc.identifier.uri |
http://arxiv.org/abs/1802.02564v1 |
|
dc.description.abstract |
Suppose e≥4 be an integer, a=e+1, b>a+(e−3)d, gcd(a,d)=1 and d∤(b−a). Let M={a,a+d,a+2d,…,a+(e−3)d,b,b+d}, which forms a minimal generating set for the numerical semigroup Γe(M), generated by the set M. We calculate the Ap\'{e}ry set and the Frobenius number of Γe(M). We also show that the minimal number of generators for the defining ideal p of the affine monomial curve parametrized by X0=ta, X1=ta+d,…,Xe−3=ta+(e−3)d, Xe−2=tb, Xe−1=tb+d is a bounded function of e. |
en_US |
dc.description.statementofresponsibility |
Ranjana Mehta, Joydip Saha, and Indranath Sengupta |
|
dc.language.iso |
en |
en_US |
dc.publisher |
Cornell University Library |
en_US |
dc.title |
Frobenius number and minimal presentation of certain numerical semigroups |
en_US |
dc.type |
Preprint |
en_US |