dc.contributor.author |
Saha, Joydip |
|
dc.contributor.author |
Senguptaa, Indranath |
|
dc.contributor.author |
Tripathi, Gaurab |
|
dc.date.accessioned |
2018-06-27T10:05:35Z |
|
dc.date.available |
2018-06-27T10:05:35Z |
|
dc.date.issued |
2018-06 |
|
dc.identifier.citation |
Saha, Joydip; Senguptaa, Indranath and Tripathi, Gaurab, "Ideals of the form I1(XY)", Journal of Symbolic Computation, DOI:10.1016/j.jsc.2018.06.011, Jun. 2018. |
en_US |
dc.identifier.uri |
http://dx.doi.org/10.1016/j.jsc.2018.06.011 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/3779 |
|
dc.description.abstract |
In this paper we compute Gröbner bases for determinantal ideals of the form , where X and Y are both matrices whose entries are indeterminates over a field K. We use the Gröbner basis structure to determine Betti numbers for such ideals. |
|
dc.description.statementofresponsibility |
by Joydip Sahaa, Indranath Senguptaa, Gaurab Tripathib |
|
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier |
en_US |
dc.subject |
Gr�bner basis |
en_US |
dc.subject |
Betti numbers |
en_US |
dc.subject |
determinantal ideals |
en_US |
dc.subject |
completely irreducible systems |
en_US |
dc.title |
Ideals of the form I1(XY) |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Journal of Symbolic Computation |
|