Abstract:
Communication between different IP cores in MPSoCs and HMPs often results in clock domain crossing. Asynchronous network on chip (NoC) support communication in such heterogeneous set-ups. While there are a large number of tools to model NoCs for synchronous systems, there is very limited tool support to model communication for multi-clock domain NoCs and analyse them. In this article, we propose the�Pluggable�Asynchronous�NEtwork on Chip (PANE) simulator, which allows system-level simulation of asynchronous network on chip (NoC). PANE allows design space exploration of synchronous, asynchronous, and mixed synchronous-asynchronous(heterogeneous) NoC for various system-level NoC parameters such as packet latencies, throughput, network saturation point and power analysis. PANE supports a large range of NoC configurations�routing algorithms, topologies, network sizes, and so on�for both synthetic and real traffic patterns. We demonstrate the application of PANE by using synchronous routers, asynchronous routers, and a mix of asynchronous and synchronous routers. One of the key advantages of PANE is that it allows a seamless transition from synchronous to asynchronous NoC simulators while keeping pace with the developments in synchronous NoC tools as they can be integrated with PANE.