dc.contributor.author |
Tyagi, Jagmohan |
|
dc.contributor.author |
Verma, Ram Baran |
|
dc.date.accessioned |
2020-02-22T06:10:46Z |
|
dc.date.available |
2020-02-22T06:10:46Z |
|
dc.date.issued |
2020-01 |
|
dc.identifier.citation |
Tyagi, Jagmohan and Verma, Ram Baran, “Lyapunov-type ineqality for extremal Pucci’s equations”, Journal of the Australian Mathematical Society, DOI: 10.1017/S1446788719000569, vol. 109, no. 3, pp. 416-430, Jan. 2020. |
en_US |
dc.identifier.uri |
https://doi.org/10.1017/S1446788719000569 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/5142 |
|
dc.description.abstract |
In this article, we establish a Lyapunov-type inequality for the following extremal Pucci’s equation:
{M+λ,Λ(D2u)+b(x)|Du|+a(x)u=0u=0in Ω,on ∂Ω,
where Ω is a smooth bounded domain in RN , N≥2 . This work generalizes the well-known works on the Lyapunov inequality for extremal Pucci’s equations with gradient nonlinearity. |
|
dc.description.abstract |
In this article, we establish Lyapunov type inequality for the following extremal Pucci’s equation
(M+
λ,Λ
(D2u) + a(x)u = 0 in Ω,
u = 0 on ∂Ω,
where Ω is a smooth bounded domain in RN , N ≥ 2. This works generalize the well-known works on Lyapunov inequalities to fully nonlinear elliptic
equations. |
|
dc.description.statementofresponsibility |
by Jagmohan Tyagi and Ram Baran Verma |
|
dc.format.extent |
vol. 109, no. 3, pp. 416-430 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Cambridge University Press |
en_US |
dc.subject |
35D40 |
en_US |
dc.subject |
Pucci's extremal operator |
en_US |
dc.subject |
nontrivial solutions |
en_US |
dc.subject |
Lyapunov inequality |
en_US |
dc.subject |
viscosity solutions |
en_US |
dc.title |
Lyapunov-type ineqality for extremal Pucci's equations |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Journal of the Australian Mathematical Society |
|