Spectral dimension of spheres

Show simple item record

dc.contributor.author Saurabh, Bipul
dc.date.accessioned 2020-03-12T08:51:48Z
dc.date.available 2020-03-12T08:51:48Z
dc.date.issued 2020-02
dc.identifier.citation Saurabh, Bipul, "Spectral dimension of spheres", Communications in Algebra, DOI: 10.1080/00927872.2020.1721514, Feb. 2020. en_US
dc.identifier.issn 0092-7872
dc.identifier.issn 1532-4125
dc.identifier.uri https://doi.org/10.1080/00927872.2020.1721514
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/5246
dc.description.abstract In this paper, we associate a growth graph to a homogeneous space of a compact group. Under certain assumptions, we show that the spectral dimension of a homogeneous space is greater than or equal to summability of the length operator associated with the growth graph. Using this, we compute spectral dimension of spheres.
dc.description.statementofresponsibility by Bipul Saurabh
dc.language.iso en_US en_US
dc.publisher Taylor & Francis en_US
dc.title Spectral dimension of spheres en_US
dc.type Article en_US
dc.relation.journal Communications in Algebra


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account