dc.contributor.author |
Saurabh, Bipul |
|
dc.date.accessioned |
2020-03-12T08:51:48Z |
|
dc.date.available |
2020-03-12T08:51:48Z |
|
dc.date.issued |
2020-02 |
|
dc.identifier.citation |
Saurabh, Bipul, "Spectral dimension of spheres", Communications in Algebra, DOI: 10.1080/00927872.2020.1721514, Feb. 2020. |
en_US |
dc.identifier.issn |
0092-7872 |
|
dc.identifier.issn |
1532-4125 |
|
dc.identifier.uri |
https://doi.org/10.1080/00927872.2020.1721514 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/5246 |
|
dc.description.abstract |
In this paper, we associate a growth graph to a homogeneous space of a compact group. Under certain assumptions, we show that the spectral dimension of a homogeneous space is greater than or equal to summability of the length operator associated with the growth graph. Using this, we compute spectral dimension of spheres. |
|
dc.description.statementofresponsibility |
by Bipul Saurabh |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Taylor & Francis |
en_US |
dc.title |
Spectral dimension of spheres |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Communications in Algebra |
|