dc.contributor.author |
Kalainathan, Diviyan |
|
dc.contributor.author |
Goudet, Olivier |
|
dc.contributor.author |
Dutta, Ritik |
|
dc.date.accessioned |
2020-04-03T15:43:52Z |
|
dc.date.available |
2020-04-03T15:43:52Z |
|
dc.date.issued |
2020-03 |
|
dc.identifier.citation |
Kalainathan, Diviyan; Goudet, Olivier and Dutta, Ritik, "Causal discovery toolbox: uncovering causal relationships in Python",Journal of Machine Learning Research, vol. 21, no. 37, pp. 1-5, Mar. 2020. |
en_US |
dc.identifier.issn |
1532-4435 |
|
dc.identifier.issn |
1533-7928 |
|
dc.identifier.uri |
http://jmlr.org/papers/v21/19-187.html |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/5267 |
|
dc.description.abstract |
This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The cdt package implements an end-to-end approach, recovering the direct dependencies (the skeleton of the causal graph) and the causal relationships between variables. It includes algorithms from the `Bnlearn' and `Pcalg' packages, together with algorithms for pairwise causal discovery such as ANM. |
|
dc.description.statementofresponsibility |
by Diviyan Kalainathan, Olivier Goudet, Ritik Dutta |
|
dc.format.extent |
vol. 21, no. 37, pp. 1-5 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Journal of Machine Learning Research |
en_US |
dc.title |
Causal discovery toolbox: uncovering causal relationships in Python |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Journal of Machine Learning Research |
|