Causal discovery toolbox: uncovering causal relationships in Python

Show simple item record

dc.contributor.author Kalainathan, Diviyan
dc.contributor.author Goudet, Olivier
dc.contributor.author Dutta, Ritik
dc.date.accessioned 2020-04-03T15:43:52Z
dc.date.available 2020-04-03T15:43:52Z
dc.date.issued 2020-03
dc.identifier.citation Kalainathan, Diviyan; Goudet, Olivier and Dutta, Ritik, "Causal discovery toolbox: uncovering causal relationships in Python",Journal of Machine Learning Research, vol. 21, no. 37, pp. 1-5, Mar. 2020. en_US
dc.identifier.issn 1532-4435
dc.identifier.issn 1533-7928
dc.identifier.uri http://jmlr.org/papers/v21/19-187.html
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/5267
dc.description.abstract This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The cdt package implements an end-to-end approach, recovering the direct dependencies (the skeleton of the causal graph) and the causal relationships between variables. It includes algorithms from the `Bnlearn' and `Pcalg' packages, together with algorithms for pairwise causal discovery such as ANM.
dc.description.statementofresponsibility by Diviyan Kalainathan, Olivier Goudet, Ritik Dutta
dc.format.extent vol. 21, no. 37, pp. 1-5
dc.language.iso en_US en_US
dc.publisher Journal of Machine Learning Research en_US
dc.title Causal discovery toolbox: uncovering causal relationships in Python en_US
dc.type Article en_US
dc.relation.journal Journal of Machine Learning Research


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account