dc.contributor.author |
Arumugam, Gurusamy |
|
dc.contributor.author |
Tyagi, Jagmohan |
|
dc.date.accessioned |
2020-04-27T05:22:47Z |
|
dc.date.available |
2020-04-27T05:22:47Z |
|
dc.date.issued |
2020-04 |
|
dc.identifier.citation |
Arumugam, Gurusamy and Tyagi, Jagmohan, "Nonnegative solutions to reaction-diffusion system with cross-diffusion and nonstandard growth conditions", Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.6401, Apr. 2020. |
en_US |
dc.identifier.issn |
0170-4214 |
|
dc.identifier.issn |
1099-1476 |
|
dc.identifier.uri |
https://doi.org/10.1002/mma.6401 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/5334 |
|
dc.description.abstract |
We establish the existence of nonnegative weak solutions to nonlinear reaction�diffusion system with cross?diffusion and nonstandard growth conditions subject to the homogeneous Neumann boundary conditions. We assume that the diffusion operators satisfy certain monotonicity condition and nonstandard growth conditions and prove that the existence of weak solutions using Galerkin's approximation technique. |
|
dc.description.statementofresponsibility |
by Gurusamy Arumugam and Jagmohan Tyagi |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Wiley |
en_US |
dc.subject |
Galerkins approximation |
en_US |
dc.subject |
second?order parabolic systems |
en_US |
dc.subject |
variable exponents |
en_US |
dc.subject |
weak solutions |
en_US |
dc.title |
Nonnegative solutions to reaction-diffusion system with cross-diffusion and nonstandard growth conditions |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Mathematical Methods in the Applied Sciences |
|