K -theory and equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters

Show simple item record

dc.contributor.author Guin, Satyajit
dc.contributor.author Saurabh, Bipul
dc.date.accessioned 2021-03-06T15:08:14Z
dc.date.available 2021-03-06T15:08:14Z
dc.date.issued 21-02-21
dc.identifier.citation Guin, Satyajit and Saurabh, Bipul, "K -theory and equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters", arXiv, Cornell University Library, DOI: arXiv:2102.11473, Feb. 2021. en_US
dc.identifier.uri http://arxiv.org/abs/2102.11473
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/6343
dc.description.abstract Let q=|q|ei??,??(?1,1], be a nonzero complex number such that |q|?1 and consider the compact quantum group Uq(2). For ??Q?{0,1}, we obtain the K-theory of the C?-algebra C(Uq(2)). Then, we produce a spectral triple on Uq(2) which is equivariant under its own comultiplication action. The spectral triple obtained here is even, 4+-summable, non-degenerate, and the Dirac operator acts on two copies of the L2-space of Uq(2). The Chern character of the associated Fredholm module is shown to be nontrivial. At the end, we compute the spectral dimension of Uq(2).
dc.description.statementofresponsibility by Satyajit Guin and Bipul Saurabh
dc.language.iso en-Us en_US
dc.publisher Cornell University Library en_US
dc.subject Compact quantum group en_US
dc.subject Spectral triple en_US
dc.subject K-theory en_US
dc.subject Quantum unitary group en_US
dc.subject Equivariance en_US
dc.subject Spectral dimension en_US
dc.title K -theory and equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters en_US
dc.type Pre-Print en_US
dc.relation.journal arXiv


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account