dc.contributor.author |
Guin, Satyajit |
|
dc.contributor.author |
Saurabh, Bipul |
|
dc.date.accessioned |
2021-03-06T15:08:14Z |
|
dc.date.available |
2021-03-06T15:08:14Z |
|
dc.date.issued |
21-02-21 |
|
dc.identifier.citation |
Guin, Satyajit and Saurabh, Bipul, "K -theory and equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters", arXiv, Cornell University Library, DOI: arXiv:2102.11473, Feb. 2021. |
en_US |
dc.identifier.uri |
http://arxiv.org/abs/2102.11473 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/6343 |
|
dc.description.abstract |
Let q=|q|ei??,??(?1,1], be a nonzero complex number such that |q|?1 and consider the compact quantum group Uq(2). For ??Q?{0,1}, we obtain the K-theory of the C?-algebra C(Uq(2)). Then, we produce a spectral triple on Uq(2) which is equivariant under its own comultiplication action. The spectral triple obtained here is even, 4+-summable, non-degenerate, and the Dirac operator acts on two copies of the L2-space of Uq(2). The Chern character of the associated Fredholm module is shown to be nontrivial. At the end, we compute the spectral dimension of Uq(2). |
|
dc.description.statementofresponsibility |
by Satyajit Guin and Bipul Saurabh |
|
dc.language.iso |
en-Us |
en_US |
dc.publisher |
Cornell University Library |
en_US |
dc.subject |
Compact quantum group |
en_US |
dc.subject |
Spectral triple |
en_US |
dc.subject |
K-theory |
en_US |
dc.subject |
Quantum unitary group |
en_US |
dc.subject |
Equivariance |
en_US |
dc.subject |
Spectral dimension |
en_US |
dc.title |
K -theory and equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters |
en_US |
dc.type |
Pre-Print |
en_US |
dc.relation.journal |
arXiv |
|