dc.contributor.author |
Dixit, Atul |
|
dc.contributor.author |
Kumar, Rahul |
|
dc.coverage.spatial |
Singapore |
|
dc.date.accessioned |
2012-09-26T07:22:32Z |
|
dc.date.available |
2012-09-26T07:22:32Z |
|
dc.date.issued |
2021-09 |
|
dc.identifier.citation |
Dixit, Atul and Kumar, Rahul, "Superimposing theta structure on a generalized modular relation", Research in the Mathematical Sciences, DOI: 10.1007/s40687-021-00277-0, vol. 8, no. 3, Sep. 2021. |
en_US |
dc.identifier.issn |
2522-0144 |
|
dc.identifier.issn |
2197-9847 |
|
dc.identifier.uri |
https://doi.org/10.1007/s40687-021-00277- |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/6674 |
|
dc.description.abstract |
A generalized modular relation of the form F(z,w,?)=F(z,iw,?), where ??=1 and i=?1????, is obtained in the course of evaluating an integral involving the Riemann ?-function. This modular relation involves a surprising new generalization of the Hurwitz zeta function ?(s,a), which we denote by ?w(s,a). We show that ?w(s,a) satisfies a beautiful theory generalizing that of ?(s,a). In particular, it is shown that for 0<a<1 and w?C, ?w(s,a) can be analytically continued to Re(s)>?1 except for a simple pole at s=1. The theories of functions reciprocal in a kernel involving a combination of Bessel functions and of a new generalized modified Bessel function 1Kz,w(x), which are also essential to obtain the generalized modular relation, are developed. |
|
dc.description.statementofresponsibility |
by Atul Dixit and Rahul Kumar |
|
dc.format.extent |
vol. 8, no. 3 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Riemann zeta function |
en_US |
dc.subject |
Hurwitz zeta function |
en_US |
dc.subject |
Bessel functions |
en_US |
dc.subject |
Theta transformation formula |
en_US |
dc.subject |
Hermite�s formula |
en_US |
dc.subject |
Modular relation |
en_US |
dc.title |
Superimposing theta structure on a generalized modular relation |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Research in the Mathematical Sciences |
|