dc.contributor.author |
Mishra, Rohit Kumar |
|
dc.contributor.author |
Monard, Francois |
|
dc.coverage.spatial |
Germany |
|
dc.date.accessioned |
2021-10-28T10:20:06Z |
|
dc.date.available |
2021-10-28T10:20:06Z |
|
dc.date.issued |
2021-07 |
|
dc.identifier.citation |
Mishra, Rohit Kumar and Monard, Fran�ois, "Range characterizations and singular value decomposition of the geodesic X-ray transform on disks of constant curvature", Journal of Spectral Theory, DOI: 10.4171/JST/364, vol. 11, no. 3, pp. 1005-1041, Jul. 2021. |
en_US |
dc.identifier.isbn |
` |
|
dc.identifier.issn |
1664-039X |
|
dc.identifier.issn |
1664-0403 |
|
dc.identifier.uri |
https://doi.org/10.4171/JST/364 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/7230 |
|
dc.description.abstract |
For a one-parameter family of simple metrics of constant curvature (4? for ??(?1,1)) on the unit disk M, we first make explicit the Pestov�Uhlmann range characterization of the geodesic X-ray transform, by constructing a basis of functions making up its range and co-kernel. Such a range characterization also translates into moment conditions � la Helgason�Ludwig or Gel'fand�Graev. We then derive an explicit Singular Value Decomposition for the geodesic X-ray transform. Computations dictate a specific choice of weighted L2?L2 setting which is equivalent to the L2(M,dVol?)?L2(?+SM,d?2) one for any ??(?1,1). |
|
dc.description.statementofresponsibility |
by Rohit Kumar Mishra and Francois Monard |
|
dc.format.extent |
vol. 11, no. 3, pp. 1005-1041 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
EMS Press |
en_US |
dc.subject |
Geodesic X-ray transform |
en_US |
dc.subject |
Inverse problems |
en_US |
dc.subject |
Integral geometry |
en_US |
dc.subject |
SingularValue Decomposition |
en_US |
dc.subject |
Constant curvature |
en_US |
dc.subject |
Consistency conditions |
en_US |
dc.subject |
Range characterization |
en_US |
dc.title |
Range characterizations and singular value decomposition of the geodesic X-ray transform on disks of constant curvature |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Journal of Spectral Theory |
|