Abstract:
This brief compares quantized float-point representation in posit and fixed-posit formats for a wide variety of pre-trained deep neural networks (DNNs). We observe that fixed-posit representation is far more suitable for DNNs as it results in a faster and low-power computation circuit. We show that accuracy remains within the range of 0.3% and 0.57% of top-1 accuracy for posit and fixed-posit quantization. We further show that the posit-based multiplier requires higher power-delay-product (PDP) and area, whereas fixed-posit reduces PDP and area consumption by 71% and 36%, respectively, compared to (Devnath et al., 2020) for the same bit-width.