dc.contributor.author |
Berndt, Bruce C. |
|
dc.contributor.author |
Dixit, Atul |
|
dc.contributor.author |
Gupta, Rajat |
|
dc.contributor.author |
Zaharescu, Alexandru |
|
dc.date.accessioned |
2022-01-07T05:41:19Z |
|
dc.date.available |
2022-01-07T05:41:19Z |
|
dc.date.issued |
2021-12 |
|
dc.identifier.citation |
Berndt, Bruce C.; Dixit, Atul; Gupta, Rajat and Zaharescu, Alexandru, “Ramanujan and Koshliakov meet Abel and Plana”, arXiv, Cornell University Library, DOI: arXiv:/2112.09819, Dec. 2021. |
en_US |
dc.identifier.issn |
|
|
dc.identifier.uri |
http://arxiv.org/abs/2112.09819 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/7389 |
|
dc.description.abstract |
The neglected Russian mathematician, N.~S.~Koshliakov, derived beautiful generalizations of the classical Abel--Plana summation formula through a setting arising from a boundary value problem in heat conduction. When we let the parameter p in this setting tend to infinity, his formulas reduce to the classical Abel--Plana summation formula. Rigorous formulations and proofs of these summation formulas are given. In his notebooks, Ramanujan derived different analogues of the Abel--Plana summation formula. One particular example provides a vast new generalization of the classical transformation formula for Eisenstein series, which we generalize in Koshliakov's setting. |
|
dc.description.statementofresponsibility |
by Bruce C. Berndt, Atul Dixit, Rajat Gupta, Alexandru Zaharescu |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Cornell University |
en_US |
dc.subject |
Classical Abel-Plana summation formula |
en_US |
dc.subject |
Koshliakov's setting. |
en_US |
dc.title |
Ramanujan and Koshliakov meet Abel and Plana |
en_US |
dc.type |
Pre-Print |
en_US |
dc.relation.journal |
arXiv |
|