dc.contributor.author |
Ghara, Soumitra |
|
dc.contributor.author |
Kumar, Surjit |
|
dc.contributor.author |
Misra, Gadadhar |
|
dc.contributor.author |
Pramanick, Paramita |
|
dc.date.accessioned |
2022-02-11T08:02:49Z |
|
dc.date.available |
2022-02-11T08:02:49Z |
|
dc.date.issued |
2022-01 |
|
dc.identifier.citation |
Ghara, Soumitra; Kumar, Surjit; Misra, Gadadhar and Pramanick, Paramita, "Commuting tuple of multiplication operators homogeneous under the unitary group", arXiv, Cornell University Library, DOI: arXiv:2201.13228, Jan. 2022. |
en_US |
dc.identifier.issn |
|
|
dc.identifier.uri |
http://arxiv.org/abs/2201.13228 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/7510 |
|
dc.description.abstract |
Let Bd be the open Euclidean ball in Cd and T:=(T1,…,Td) be a commuting tuple of bounded linear operators on a complex separable Hilbert space H. Let U(d) be the linear group of unitary transformations acting on Cd by the rule: z↦u⋅z, z∈Cd, and u⋅z is the usual matrix product. Consequently, u⋅z is a linear function taking values in Cd. Let u1(z),…,ud(z) be the coordinate functions of u⋅z. We define u⋅T to be the operator (u1(T),…,ud(T)) and say that T is U(d)-homogeneous if u⋅T is unitarily equivalent to T for all u∈U(d). We find conditions to ensure that a U(d)-homogeneous tuple T is unitarily equivalent to a tuple M of multiplication by coordinate functions acting on some reproducing kernel Hilbert space HK(Bd,Cn)⊆\rm Hol(Bd,Cn), where n is the dimension of the joint kernel of the d-tuple T. The U(d)-homogeneous operators in the case of n=1 have been classified under mild assumptions on the reproducing kernel K. In this paper, we study the class of U(d)-homogeneous tuples M in detail for n=d, or equivalently, kernels K quasi-invariant under the group U(d). Among other things, we describe a large class of U(d)-homogeneous operators and obtain explicit criterion for (i) boundedness, (ii) reducibility and (iii) mutual unitary equivalence of these operators. Finally, we classify the kernels K quasi-invariant under U(d), where these kernels transform under an irreducible unitary representation c of the group U(d). |
|
dc.description.statementofresponsibility |
by Soumitra Ghara, Surjit Kumar, Gadadhar Misra and Paramita Pramanick |
|
dc.format.extent |
|
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Cornell University Library |
en_US |
dc.subject |
Functional Analysis |
en_US |
dc.subject |
Operators |
en_US |
dc.subject |
Unitary Group |
en_US |
dc.subject |
kernel Hilbert space |
en_US |
dc.subject |
Euclidean ball |
en_US |
dc.title |
Commuting tuple of multiplication operators homogeneous under the unitary group |
en_US |
dc.type |
Pre-Print |
en_US |
dc.relation.journal |
arXiv |
|