Unboundedness of the first and the last Betti numbers of numerical semigroups segnerated by concatenation

Show simple item record

dc.contributor.author Mehta, Ranjana
dc.contributor.author Saha, Joydip
dc.contributor.author Sengupta, Indranath
dc.date.accessioned 2022-03-10T14:09:00Z
dc.date.available 2022-03-10T14:09:00Z
dc.date.issued 2022-02
dc.identifier.citation Mehta, Ranjana; Saha, Joydip and Sengupta, Indranath, "Unboundedness of the first and the last Betti numbers of numerical semigroups segnerated by concatenation", arXiv, Cornell University Library, DOI: arXiv:2202.12909, Feb. 2022. en_US
dc.identifier.issn
dc.identifier.uri http://arxiv.org/abs/2202.12909
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/7573
dc.description.abstract We show that the minimal number of generators and the Cohen-Macaulay type of a family of numerical semigroups generated by concatenation of arithmetic sequences is unbounded.
dc.description.statementofresponsibility by Ranjana Mehta, Joydip Saha and Indranath Sengupta
dc.language.iso en_US en_US
dc.publisher Cornell University Library en_US
dc.subject Betti numbers en_US
dc.subject Numerical semigroups en_US
dc.subject Concatenation en_US
dc.subject Cohen-Macaulay en_US
dc.subject Arithmetic sequences en_US
dc.title Unboundedness of the first and the last Betti numbers of numerical semigroups segnerated by concatenation en_US
dc.type Pre-Print en_US
dc.relation.journal arxXiv


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account