dc.contributor.author |
Saha, Joydip |
|
dc.contributor.author |
Sengupta, Indranath |
|
dc.coverage.spatial |
India |
|
dc.date.accessioned |
2022-03-26T10:11:11Z |
|
dc.date.available |
2022-03-26T10:11:11Z |
|
dc.date.issued |
2022-06 |
|
dc.identifier.citation |
Saha, Joydip and Sengupta, Indranath, "Derivation modules for sum and gluing", Proceedings - Mathematical Sciences, DOI: 10.1007/s12044-022-00658-7, vol. 132, no. 1, Jun. 2022. |
en_US |
dc.identifier.issn |
0253-4142 |
|
dc.identifier.issn |
0973-7685 |
|
dc.identifier.uri |
https://doi.org/10.1007/s12044-022-00658-7 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/7608 |
|
dc.description.abstract |
In this paper, we explicitly compute the derivation module of quotients of polynomial rings by ideals formed by the sum or by some other gluing technique. We discuss cases of monomial ideals and binomial ideals separately. |
|
dc.description.statementofresponsibility |
by Joydip Saha and Indranath Sengupta |
|
dc.format.extent |
vol. 132, no. 1 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Indian Academy of Sciences |
en_US |
dc.subject |
Monomial ideals |
en_US |
dc.subject |
Derivation modules |
en_US |
dc.subject |
Gluing |
en_US |
dc.subject |
Polynomial rings |
en_US |
dc.subject |
Binomial ideals |
en_US |
dc.title |
Derivation modules for sum and gluing |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Proceedings - Mathematical Sciences |
|