IRC-safe graph autoencoder for an unsupervised anomaly detection

Show simple item record

dc.contributor.author Atkinson, Oliver
dc.contributor.author Bhardwaj, Akanksha
dc.contributor.author Englert, Christoph
dc.contributor.author Konar, Partha
dc.contributor.author Ngairangbam, Vishal S.
dc.contributor.author Spannowsky, Michael
dc.coverage.spatial United States of America
dc.date.accessioned 2022-05-06T15:36:46Z
dc.date.available 2022-05-06T15:36:46Z
dc.date.issued 2022-04
dc.identifier.citation Atkinson, Oliver; Bhardwaj, Akanksha; Englert, Christoph; Konar, Partha; Ngairangbam, Vishal S. and Spannowsky, Michael, "IRC-safe graph autoencoder for an unsupervised anomaly detection", arXiv, Cornell University Library, DOI: arXiv:2204.12231, Apr. 2022. en_US
dc.identifier.issn
dc.identifier.uri http://arxiv.org/abs/2204.12231
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/7703
dc.description.abstract Anomaly detection through employing machine learning techniques has emerged as a novel powerful tool in the search for new physics beyond the Standard Model. Historically similar to the development of jet observables, theoretical consistency has not always assumed a central role in the fast development of algorithms and neural network architectures. In this work, we construct an infrared and collinear safe autoencoder based on graph neural networks by employing energy-weighted message passing. We demonstrate that whilst this approach has theoretically favourable properties, it also exhibits formidable sensitivity to non-QCD structures.
dc.description.statementofresponsibility by Oliver Atkinson, Akanksha Bhardwaj, Christoph Englert, Partha Konar, Vishal S. Ngairangbam and Michael Spannowsky
dc.format.extent
dc.language.iso en_US en_US
dc.publisher Cornell University Library en_US
dc.subject Anomaly detection en_US
dc.subject QCD structures en_US
dc.subject Non-QCD structures en_US
dc.subject Algorithms en_US
dc.subject Graph neural networks en_US
dc.title IRC-safe graph autoencoder for an unsupervised anomaly detection en_US
dc.type Pre-Print en_US
dc.relation.journal arXiv


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account