dc.contributor.author |
Berndt, Bruce C. |
|
dc.contributor.author |
Dixit, Atul |
|
dc.contributor.author |
Gupta, Rajat |
|
dc.contributor.author |
Zaharescu, Alexandru |
|
dc.coverage.spatial |
United States of America |
|
dc.date.accessioned |
2022-06-29T12:39:32Z |
|
dc.date.available |
2022-06-29T12:39:32Z |
|
dc.date.issued |
2022-06 |
|
dc.identifier.citation |
Berndt, Bruce C.; Dixit, Atul; Gupta, Rajat and Zaharescu, Alexandru, “A class of identities associated with Dirichlet series satisfying Hecke's functional equation”, Proceedings of the American Mathematical Society, DOI: 10.1090/proc/16002, vol. 150, no. 11, pp. 4785-4799, Jun. 2022. |
en_US |
dc.identifier.issn |
0002-9939 |
|
dc.identifier.issn |
1088-6826 |
|
dc.identifier.uri |
https://doi.org/10.1090/proc/16002 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/7832 |
|
dc.description.abstract |
We consider two sequences 𝑎¹𝑛ºand𝑏¹𝑛º, 𝑛1, generated by Dirichlet series ∑︁𝑛=1𝑎¹𝑛º𝜆𝑠𝑛 and ∑︁𝑛=1𝑏¹𝑛º𝜇𝑠𝑛 satisfying a familiar functional equation involving the gamma function Γ¹𝑠º. Two general identities are established. The first involves the modified Bessel function 𝐾𝜇¹𝑧º and can be thought of as a ‘modular’ or ‘theta’ relation wherein modified Bessel functions, instead of exponential functions, appear. Appearing in the second identity are 𝐾𝜇¹𝑧º, the Bessel functions of imaginary argument 𝐼𝜇¹𝑧º, and ordinary hypergeometric functions 2𝐹¹𝑎 𝑏;𝑐;𝑧º. Although certain special cases appear in the literature, the general identities are new. The arithmetical functions appearing in the identities include Ramanujan's arithmetical function 𝜏¹𝑛º the number of representations of𝑛as a sum of 𝑘squares𝑟𝑘¹𝑛º and primitive Dirichlet characters 𝜒¹𝑛º. |
|
dc.description.statementofresponsibility |
by Bruce C. Berndt, Atul Dixit, Rajat Gupta and Alexandru Zaharescu |
|
dc.format.extent |
vol. 150, no. 11, pp. 4785-4799 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
American Mathematical Society |
en_US |
dc.subject |
Dirichlet series |
en_US |
dc.subject |
Gamma function |
en_US |
dc.subject |
Infinite series |
en_US |
dc.subject |
Hurwitz zeta function |
en_US |
dc.subject |
Arithmetical function |
en_US |
dc.title |
A class of identities associated with Dirichlet series satisfying Hecke's functional equation |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Proceedings of the American Mathematical Society |
|