dc.contributor.author |
Pandit, Sudip |
|
dc.contributor.author |
Saha, Joydip |
|
dc.contributor.author |
Sengupta, Indranath |
|
dc.coverage.spatial |
Singapore |
|
dc.date.accessioned |
2022-07-14T15:22:05Z |
|
dc.date.available |
2022-07-14T15:22:05Z |
|
dc.date.issued |
2022-09 |
|
dc.identifier.citation |
Pandit, Sudip; Saha, Joydip and Sengupta, Indranath, “Numerical semigroups with unique apery expansions”, Journal of Algebra and Its Applications, DOI: 10.1142/S0219498823501852, vol. 22, no. 9, Sep. 2023. |
en_US |
dc.identifier.issn |
0219-4988 |
|
dc.identifier.issn |
1793-6829 |
|
dc.identifier.uri |
https://doi.org/10.1142/S0219498823501852 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/7889 |
|
dc.description.abstract |
In this paper, we carry out a fairly comprehensive study of two special classes of numerical semigroups, one generated by the sequence of partial sums of an arithmetic progression and the other one generated by a shifted geometric progression, in embedding dimension 4. Both these classes have the common feature that they have unique expansions of the Apery set elements. |
|
dc.description.statementofresponsibility |
by Sudip Pandit, Joydip Saha and Indranath Sengupta |
|
dc.format.extent |
vol. 22, no. 9 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
World Scientific Publishing |
en_US |
dc.subject |
Numerical semigroups |
en_US |
dc.subject |
Monomial curves |
en_US |
dc.subject |
Frobenius number |
en_US |
dc.subject |
Pseudo-Frobenius number |
en_US |
dc.subject |
Tangent cone |
en_US |
dc.title |
Numerical semigroups with unique Apery expansions |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Journal of Algebra and Its Applications |
|