On the algebraic invariants of certain affine semigroup algebras

Show simple item record

dc.contributor.author Bhardwaj, Om Prakash
dc.contributor.author Sengupta, Indranath
dc.coverage.spatial United States of America
dc.date.accessioned 2022-07-26T14:22:39Z
dc.date.available 2022-07-26T14:22:39Z
dc.date.issued 2022-07
dc.identifier.citation Bhardwaj, Om Prakash and Sengupta, Indranath, "On the algebraic invariants of certain affine semigroup algebras", arXiv, Cornell University Library, DOI: arXiv:2207.02675, Jul. 2022. en_US
dc.identifier.uri http://arxiv.org/abs/2207.02675
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/7911
dc.description.abstract Let a and d be two linearly independent vectors in N2, over the field of rational numbers.For a positive integer k ≥2, consider the sequencea, a+d, . . . , a+kdsuch that the affine semigroupSa,d,k=〈a, a+d, . . . , a+kd〉is minimally generated by this sequence. We study the properties of affinesemigroup algebra k[Sa,d,k] associated to this semigroup. We prove thatk [Sa,d,k] is always Cohen Macaulay and it is Gorenstein if and only if k= 2. Fork= 2,3,4, we explicitly compute the syzygies,minimal graded free resolution and Hilbert series of k[Sa,d,k]. We also give a minimal generating setand a Gr ̈obner basis of the defining ideal of k[Sa,d,k]. Consequently, we prove that k[Sa,d,k] is Koszul. Finally, we prove that the Castelnuovo-Mumford regularity of k[Sa,d,k] is1 for any a, d, k.
dc.description.statementofresponsibility by Om Prakash Bhardwaj and Indranath Sengupta
dc.language.iso en_US en_US
dc.publisher Cornell University Library en_US
dc.subject Algebraic invariants en_US
dc.subject Affine semigroup en_US
dc.subject Hilbert series en_US
dc.subject Gorenstein en_US
dc.subject Castelnuovo-Mumford en_US
dc.title On the algebraic invariants of certain affine semigroup algebras en_US
dc.type Article en_US
dc.relation.journal arXiv


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account