Classifying oscillatory brain activity associated with Indian Rasas using network metrics

Show simple item record

dc.contributor.author Pandey, Pankaj
dc.contributor.author Tripathi, Richa
dc.contributor.author Miyapuram, Krishna Prasad
dc.coverage.spatial United Kingdom
dc.date.accessioned 2022-07-28T12:48:51Z
dc.date.available 2022-07-28T12:48:51Z
dc.date.issued 2022-12
dc.identifier.citation Pandey, Pankaj; Tripathi, Richa and Miyapuram, Krishna Prasad, "Classifying oscillatory brain activity associated with Indian Rasas using network metrics", Brain Informatics, DOI: 10.1186/s40708-022-00163-7, vol. 9, no. 1, Dec. 2022. en_US
dc.identifier.issn 2198-4018
dc.identifier.issn 2198-4026
dc.identifier.uri https://doi.org/10.1186/s40708-022-00163-7
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/7925
dc.description.abstract Neural signatures for the western classification of emotions have been widely discussed in the literature. The ancient Indian treatise on performing arts known as Natyashastra categorizes emotions into nine classes, known as Rasas. Rasa-as opposed to a pure emotion-is defined as a superposition of certain transitory, dominant, and temperamental emotional states. Although Rasas have been widely discussed in the text, dedicated brain imaging studies have not been conducted in their research. Our study examines the neural oscillations, recorded through electroencephalography (EEG) imaging, that are elicited while experiencing emotional states corresponding to Rasas. We identify differences among them using network-based functional connectivity metrics in five different frequency bands. Further, Random Forest models are trained on the extracted network features, and we present our findings based on classifier predictions. We observe slow (delta) and fast brain waves (beta and gamma) exhibited the maximum discriminating features between Rasas, whereas alpha and theta bands showed fewer distinguishable pairs. Out of nine Rasas, Sringaram (love), Bibhatsam (odious), and Bhayanakam (terror) were distinguishable from other Rasas the most across frequency bands. On the scale of most network metrics, Raudram (rage) and Sringaram are on the extremes, which also resulted in their good classification accuracy of 95%. This is reminiscent of the circumplex model where anger and contentment/happiness are on extremes on the pleasant scale. Interestingly, our results are consistent with the previous studies which highlight the significant role of higher frequency oscillations in the classification of emotions, in contrast to the alpha band that has shows non-significant differences across emotions. This research contributes to one of the first attempts to investigate the neural correlates of Rasas. Therefore, the results of this study can potentially guide the explorations into the entrainment of brain oscillations between performers and viewers, which can further lead to better performances and viewer experience.
dc.description.statementofresponsibility by Pankaj Pandey, Richa Tripathi and Krishna Prasad Miyapuram
dc.format.extent vol. 9, no. 1
dc.language.iso en_US en_US
dc.publisher SpringerOpen en_US
dc.subject EEG en_US
dc.subject Emotion en_US
dc.subject Classification en_US
dc.subject Natyashastra en_US
dc.subject Rasas en_US
dc.subject Movie clips en_US
dc.subject Random Forest en_US
dc.subject WPLI en_US
dc.subject Graph theory en_US
dc.title Classifying oscillatory brain activity associated with Indian Rasas using network metrics en_US
dc.type Article en_US
dc.relation.journal Brain Informatics


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account