dc.contributor.author |
Guin, Satyajit |
|
dc.contributor.author |
Saurabh, Bipul |
|
dc.coverage.spatial |
United Kingdom |
|
dc.date.accessioned |
2012-09-19T16:04:34Z |
|
dc.date.available |
2012-09-19T16:04:34Z |
|
dc.date.issued |
2022-09 |
|
dc.identifier.citation |
Guin, Satyajit and Saurabh, Bipul, "Equivariant spectral triples for homogeneous spaces of the compact quantum group Uq(2)", Mathematical Physics, Analysis and Geometry, DOI: 10.1007/s11040-022-09432-7, vol. 25, no. 3, Sep. 2022. |
en_US |
dc.identifier.issn |
1385-0172 |
|
dc.identifier.issn |
1572-9656 |
|
dc.identifier.uri |
https://doi.org/10.1007/s11040-022-09432-7 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/7959 |
|
dc.description.abstract |
In this article, we study homogeneous spacesUq(2)/φTandUq(2)/ψTof the compactquantum groupUq(2),q∈C\{0}. The homogeneous spaceUq(2)/φTis shown to bethe braided quantum groupSUq(2). The homogeneous spaceUq(2)/ψTis establishedas a universalC∗-algebra given by a finite set of generators and relations. ItsK-groupsare computed and two families of finitely summable odd spectral triples, one isUq(2)-equivariant and the other isT2-equivariant, are constructed. Using the index pairing,it is shown that the induced Fredholm modules for these families of spectral triplesgive each element in theK-homology groupK1(C(Uq(2)/ψT)). |
|
dc.description.statementofresponsibility |
by Satyajit Guin and Bipul Saurabh |
|
dc.format.extent |
vol. 25, no. 3 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Springer |
en_US |
dc.subject |
Quantum unitary group |
en_US |
dc.subject |
Homogeneous extension |
en_US |
dc.subject |
Spectral triples |
en_US |
dc.subject |
GNSspace |
en_US |
dc.subject |
Compact Quantum Group |
en_US |
dc.title |
Equivariant spectral triples for homogeneous spaces of the compact quantum group Uq(2) |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Mathematical Physics, Analysis and Geometry |
|