dc.contributor.advisor |
Khanna, Nitin |
|
dc.contributor.author |
Singh, Amrita |
|
dc.date.accessioned |
2022-08-31T10:59:37Z |
|
dc.date.available |
2022-08-31T10:59:37Z |
|
dc.date.issued |
2022 |
|
dc.identifier.citation |
Singh, Amrita (2022). Multiclass crater classification using fully convolutional residual dense network. Gandhinagar: Indian Institute of Technology Gandhinagar, 93p. (Acc. No.: T00999). |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/8058 |
|
dc.description.statementofresponsibility |
by Amrita Singh |
|
dc.format.extent |
ix, 93p.: hbk.; 30 cm. |
|
dc.language.iso |
en_US |
|
dc.publisher |
Indian Institute of Technology Gandhinagar |
|
dc.subject |
20250024 |
|
dc.subject |
Crater Classification |
|
dc.subject |
Multiclass Crater Classification |
|
dc.subject |
Data Augmentation |
|
dc.subject |
Class Prediction |
|
dc.subject |
InceptionV3 Architecture |
|
dc.title |
Multiclass crater classification using fully convolutional residual dense network |
|
dc.type |
Thesis |
|
dc.contributor.department |
Electrical Engineering |
|
dc.description.degree |
M. Tech |
|