Multiclass crater classification using fully convolutional residual dense network

Show simple item record

dc.contributor.advisor Khanna, Nitin
dc.contributor.author Singh, Amrita
dc.date.accessioned 2022-08-31T10:59:37Z
dc.date.available 2022-08-31T10:59:37Z
dc.date.issued 2022
dc.identifier.citation Singh, Amrita (2022). Multiclass crater classification using fully convolutional residual dense network. Gandhinagar: Indian Institute of Technology Gandhinagar, 93p. (Acc. No.: T00999).
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/8058
dc.description.statementofresponsibility by Amrita Singh
dc.format.extent ix, 93p.: hbk.; 30 cm.
dc.language.iso en_US
dc.publisher Indian Institute of Technology Gandhinagar
dc.subject 20250024
dc.subject Crater Classification
dc.subject Multiclass Crater Classification
dc.subject Data Augmentation
dc.subject Class Prediction
dc.subject InceptionV3 Architecture
dc.title Multiclass crater classification using fully convolutional residual dense network
dc.type Thesis
dc.contributor.department Electrical Engineering
dc.description.degree M. Tech


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account