Joint extreme values of L-functions

Show simple item record

dc.contributor.author Mahatab, Kamalakshya
dc.contributor.author Pankowski, Lukasz
dc.contributor.author Vatwani, Akshaa
dc.coverage.spatial United Kingdom
dc.date.accessioned 2022-09-07T13:49:27Z
dc.date.available 2022-09-07T13:49:27Z
dc.date.issued 2022-08
dc.identifier.citation Mahatab, Kamalakshya; Pankowski, Lukasz and Vatwani, Akshaa, "Joint extreme values of L-functions", Mathematische Zeitschrift, DOI: 10.1007/s00209-022-03089-2, Aug. 2022. en_US
dc.identifier.issn 0025-5874
dc.identifier.issn 1432-1823
dc.identifier.uri https://doi.org/10.1007/s00209-022-03089-2
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/8113
dc.description.abstract We consider L-functions L1,..., Lk from the Selberg class which have polynomial Euler product and satisfy Selberg's orthonormality condition. We show that on every vertical line s = σ + it with σ ∈ (1/2, 1), these L-functions simultaneously take large values of size exp(c (log t)1−σ/log log t inside a small neighborhood. Our method extends to σ = 1 unconditionally, and to σ = 1/2 on the generalized Riemann hypothesis. We also obtain similar joint omega results for arguments of the given L-functions.
dc.description.statementofresponsibility by Kamalakshya Mahatab, Lukasz Pankowski and Akshaa Vatwani
dc.language.iso en_US en_US
dc.publisher Springer en_US
dc.subject L-functions en_US
dc.subject Selberg class en_US
dc.subject Riemann hypothesis en_US
dc.subject Riemann zeta function en_US
dc.subject Euler product en_US
dc.title Joint extreme values of L-functions en_US
dc.type Article en_US
dc.relation.journal Mathematische Zeitschrift


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account