dc.contributor.author |
Mahatab, Kamalakshya |
|
dc.contributor.author |
Pankowski, Lukasz |
|
dc.contributor.author |
Vatwani, Akshaa |
|
dc.coverage.spatial |
United Kingdom |
|
dc.date.accessioned |
2022-09-07T13:49:27Z |
|
dc.date.available |
2022-09-07T13:49:27Z |
|
dc.date.issued |
2022-08 |
|
dc.identifier.citation |
Mahatab, Kamalakshya; Pankowski, Lukasz and Vatwani, Akshaa, "Joint extreme values of L-functions", Mathematische Zeitschrift, DOI: 10.1007/s00209-022-03089-2, Aug. 2022. |
en_US |
dc.identifier.issn |
0025-5874 |
|
dc.identifier.issn |
1432-1823 |
|
dc.identifier.uri |
https://doi.org/10.1007/s00209-022-03089-2 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/8113 |
|
dc.description.abstract |
We consider L-functions L1,..., Lk from the Selberg class which have polynomial Euler product and satisfy Selberg's orthonormality condition. We show that on every vertical line s = σ + it with σ ∈ (1/2, 1), these L-functions simultaneously take large values of size exp(c (log t)1−σ/log log t inside a small neighborhood. Our method extends to σ = 1 unconditionally, and to σ = 1/2 on the generalized Riemann hypothesis. We also obtain similar joint omega results for arguments of the given L-functions. |
|
dc.description.statementofresponsibility |
by Kamalakshya Mahatab, Lukasz Pankowski and Akshaa Vatwani |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Springer |
en_US |
dc.subject |
L-functions |
en_US |
dc.subject |
Selberg class |
en_US |
dc.subject |
Riemann hypothesis |
en_US |
dc.subject |
Riemann zeta function |
en_US |
dc.subject |
Euler product |
en_US |
dc.title |
Joint extreme values of L-functions |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Mathematische Zeitschrift |
|