Abstract:
Hydrothermally synthesized nanocoral structures of copper-cobalt sulfide is identified as a novel catalyst for electrocatalytic splitting of hydrazine (N2H4) in both basic and neutral mediums. Electrochemical studies in basic medium indicated that electrocatalytic splitting of hydrazine occurs at a much lower potential 0.2 V (vs Ag/AgCl) in copper-cobalt sulfide in comparison to cobalt sulfide. Gaseous analysis reveals formation of oxygen at near thermodynamic voltage of 1.23 V. Experimental observations revealed the influence of hydrazine electro-oxidation on water splitting reaction. Adsorption energy of N2H4 on catalyst surface and projected density of states from computational studies using Density Function Theory (DFT) proved higher activity for copper-cobalt sulfide catalyst for the electrocatalytic splitting of Hydrazine. Plausible mechanism is depicted based upon the experimental observations.