Derivation module and the Hilbert-Kunz multiplicity of the co-ordinate ring of a projective monomial curve

Show simple item record

dc.contributor.author Bhardwaj, Om Prakash
dc.contributor.author Sengupta, Indranath
dc.coverage.spatial United States of America
dc.date.accessioned 2022-11-03T05:41:13Z
dc.date.available 2022-11-03T05:41:13Z
dc.date.issued 2022-10
dc.identifier.citation Bhardwaj, Om Prakash and Sengupta, Indranath, "Derivation module and the Hilbert-Kunz multiplicity of the co-ordinate ring of a projective monomial curve", arXiv, Cornell University Library, DOI: arXiv:2210.12143, Oct. 2022. en_US
dc.identifier.uri https://arxiv.org/abs/2210.12143
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/8289
dc.description.abstract Let n1, n2, . . . , npbe a sequence of positive integers such thatn1< n2<� � �<npand gcd(n1, n2, . . . , np) = 1. LetS=?(0, np),(n1, np-n1), . . . ,(np-1, np?np-1),(np,0)?be an affine semigroup inN2. The semigroup ringk[S] is the co-ordinate ring of the projectivemonomial curve in the projective spacePpk, which is defined parametrically byx0=vnp, x1=un1vnp-n1, . . . , xp-1=unp-1vnp-np-1, xp=unp.We consider thatn1, n2, . . . , npforms an arithmetic sequence. Forp= 2,3, we give anexplicit set of minimal generators for the derivation module Derk(k[S]). Forp >3, wewrite an explicit formula for?(Derk(k[S])) and give a potential set of derivations for thederivation module Derk(k[S]). Further, we give an explicit formula for the Hilbert-Kunzmultiplicity of the co-ordinate ring of any projective monomial curve.
dc.description.statementofresponsibility by Om Prakash Bhardwaj and Indranath Sengupta
dc.language.iso en_US en_US
dc.publisher Cornell University Library en_US
dc.subject Derivation module en_US
dc.subject Hilbert-Kunz multiplicity en_US
dc.subject Projective monomial curve en_US
dc.subject Frobenius elements en_US
dc.subject Affine semigroup en_US
dc.title Derivation module and the Hilbert-Kunz multiplicity of the co-ordinate ring of a projective monomial curve en_US
dc.type Pre-Print Archive en_US
dc.relation.journal arXiv


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account