An induction principle for the Bombieri-Vinogradov theorem over Fq[t] and a variant of the Titchmarsh divisor problem

Show simple item record

dc.contributor.author Dey, Sampa
dc.contributor.author Savalia, Aditi
dc.coverage.spatial United States of America
dc.date.accessioned 2023-01-20T07:17:54Z
dc.date.available 2023-01-20T07:17:54Z
dc.date.issued 2023-05
dc.identifier.citation Dey, Sampa and Savalia, Aditi, "An induction principle for the Bombieri-Vinogradov theorem over Fq[t] and a variant of the Titchmarsh divisor problem", Journal of Mathematical Analysis and Applications, DOI: 10.1016/j.jmaa.2022.126928, vol. 521, no. 2, May 2023. en_US
dc.identifier.issn 0022-247X
dc.identifier.issn 1096-0813
dc.identifier.uri https://doi.org/10.1016/j.jmaa.2022.126928
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/8496
dc.description.abstract Let Fq[t] be the polynomial ring over the finite field Fq. For arithmetic functions ψ1,ψ2:Fq[t]→C, we establish that if a Bombieri-Vinogradov type equidistribution result holds for ψ1 and ψ2, then it also holds for their Dirichlet convolution ψ1⁎ψ2. As an application of this, we resolve a version of the Titchmarsh divisor problem in Fq[t]. More precisely, we obtain an asymptotic for the average behaviour of the divisor function over shifted products of two primes in Fq[t].
dc.description.statementofresponsibility by Sampa Dey and Aditi Savalia
dc.format.extent vol. 521, no. 2
dc.language.iso en_US en_US
dc.publisher Elsevier en_US
dc.subject Divisor function en_US
dc.subject Bombieri-Vinogradov theorem en_US
dc.subject Function fields en_US
dc.subject Large sieve inequality en_US
dc.subject Titchmarsh divisor problem en_US
dc.title An induction principle for the Bombieri-Vinogradov theorem over Fq[t] and a variant of the Titchmarsh divisor problem en_US
dc.type Journal Paper en_US
dc.relation.journal Journal of Mathematical Analysis and Applications


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account