dc.contributor.author |
Balu, Ambhore Siddhi |
|
dc.contributor.author |
Saha, Kamalesh |
|
dc.contributor.author |
Sengupta, Indranath |
|
dc.coverage.spatial |
United States of America |
|
dc.date.accessioned |
2023-04-21T14:50:46Z |
|
dc.date.available |
2023-04-21T14:50:46Z |
|
dc.date.issued |
2023-04 |
|
dc.identifier.citation |
Balu, Ambhore Siddhi; Saha, Kamalesh and Sengupta, Indranath, "The v-number of binomial edge ideals", arXiv, Cornell University Library, DOI: arXiv:2304.06416v1, Apr. 2023. |
|
dc.identifier.issn |
2214-7853 |
|
dc.identifier.uri |
https://arxiv.org/abs/2304.06416v1 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/8760 |
|
dc.description.abstract |
The invariant v-number was introduced very recently in the study of Reed-Muller-type codes. Jaramillo and Villarreal (J Combin. Theory Ser. A 177:105310, 2021) initiated the study of the v-number of edge ideals. Inspired by their work, we take the initiation to study the v-number of binomial edge ideals in this paper. We discuss some properties and bounds of the v-number of binomial edge ideals. We explicitly find the v-number of binomial edge ideals locally at the associated prime corresponding to the cutset ?. We show that the v-number of Knutson binomial edge ideals is less than or equal to the v-number of their initial ideals. Also, we classify all binomial edge ideals whose v-number is 1. Moreover, we try to relate the v-number with the Castelnuvo-Mumford regularity of binomial edge ideals and give a conjecture in this direction. |
|
dc.description.statementofresponsibility |
by Ambhore Siddhi Balu, Kamalesh Saha and Indranath Sengupta |
|
dc.language.iso |
en_US |
|
dc.publisher |
Cornell University Library |
|
dc.subject |
v-number |
|
dc.subject |
Binomial edge ideals |
|
dc.subject |
Conjecture |
|
dc.subject |
Reed-Muller-type codes |
|
dc.subject |
Jaramillo and Villarreal |
|
dc.title |
The v-number of binomial edge ideals |
|
dc.type |
Pre-Print Archive |
|
dc.relation.journal |
arXiv |
|