The v-number of binomial edge ideals

Show simple item record

dc.contributor.author Balu, Ambhore Siddhi
dc.contributor.author Saha, Kamalesh
dc.contributor.author Sengupta, Indranath
dc.coverage.spatial United States of America
dc.date.accessioned 2023-04-21T14:50:46Z
dc.date.available 2023-04-21T14:50:46Z
dc.date.issued 2023-04
dc.identifier.citation Balu, Ambhore Siddhi; Saha, Kamalesh and Sengupta, Indranath, "The v-number of binomial edge ideals", arXiv, Cornell University Library, DOI: arXiv:2304.06416v1, Apr. 2023.
dc.identifier.issn 2214-7853
dc.identifier.uri https://arxiv.org/abs/2304.06416v1
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/8760
dc.description.abstract The invariant v-number was introduced very recently in the study of Reed-Muller-type codes. Jaramillo and Villarreal (J Combin. Theory Ser. A 177:105310, 2021) initiated the study of the v-number of edge ideals. Inspired by their work, we take the initiation to study the v-number of binomial edge ideals in this paper. We discuss some properties and bounds of the v-number of binomial edge ideals. We explicitly find the v-number of binomial edge ideals locally at the associated prime corresponding to the cutset ?. We show that the v-number of Knutson binomial edge ideals is less than or equal to the v-number of their initial ideals. Also, we classify all binomial edge ideals whose v-number is 1. Moreover, we try to relate the v-number with the Castelnuvo-Mumford regularity of binomial edge ideals and give a conjecture in this direction.
dc.description.statementofresponsibility by Ambhore Siddhi Balu, Kamalesh Saha and Indranath Sengupta
dc.language.iso en_US
dc.publisher Cornell University Library
dc.subject v-number
dc.subject Binomial edge ideals
dc.subject Conjecture
dc.subject Reed-Muller-type codes
dc.subject Jaramillo and Villarreal
dc.title The v-number of binomial edge ideals
dc.type Pre-Print Archive
dc.relation.journal arXiv


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account