dc.contributor.author |
Tyagi, Jagmohan |
|
dc.date.accessioned |
2014-03-18T17:37:29Z |
|
dc.date.available |
2014-03-18T17:37:29Z |
|
dc.date.issued |
2013-10 |
|
dc.identifier.citation |
Tyagi, Jagmohan, “A note on the stability of solutions to quasilinear elliptic equations”, Advances in Calculus of Variations, DOI: 10.1515/acv-2012-0014, vol. 6. No. 4, pp. 483-492, Jan. 2013. |
en_US |
dc.identifier.issn |
1864-8258 |
|
dc.identifier.issn |
1864-8266 |
|
dc.identifier.uri |
http://dx.doi.org/10.1515/acv-2012-0014 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/911 |
|
dc.description.abstract |
In this note, we prove a stability theorem for a class of quasilinear elliptic equations -δp u = a(x)u-f(x,u) in Ω, u=0 on δΩ, where δp u= div(/∇uu/ p-2∇u) 2 ≤ p < p < ∞ ,Ω ⊂ &RdblN is an open, smooth and bounded subset. We show that if u is an unstable solution of the above problem, then u vanishes at some point of Ω. In this work, a and f may change sign. |
en_US |
dc.description.statementofresponsibility |
by Jagmohan Tyagi |
|
dc.format.extent |
Vol. 6. No. 4, pp. 483-492 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
De Gruyter |
en_US |
dc.subject |
p laplacian |
en_US |
dc.subject |
Stability |
en_US |
dc.title |
A note on the stability of solutions to quasilinear elliptic equations |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Advances in Calculus of Variations |
|