The ZTF source classification project: III. a catalog of variable sources

Show simple item record

dc.contributor.author Healy, Brian F.
dc.contributor.author Coughlin, Michael W.
dc.contributor.author Mahabal, Ashish A.
dc.contributor.author Laz, Theophile J. du
dc.contributor.author Drake, Andrew
dc.contributor.author Graham, Matthew J.
dc.contributor.author Hillenbrand, Lynne A.
dc.contributor.author Roestel, Jan van
dc.contributor.author Szkody, Paula
dc.contributor.author Zielske, LeighAnna
dc.contributor.author Guiga, Mohammed
dc.contributor.author Hassan, Muhammad Yusuf
dc.contributor.author Hughes, Jill L.
dc.contributor.author Nir, Guy
dc.contributor.author Parikh, Saagar
dc.contributor.author Park, Sungmin
dc.contributor.author Purohit, Palak
dc.contributor.author Rebbapragada, Umaa
dc.contributor.author Reed, Draco
dc.contributor.author Wold, Avery
dc.contributor.author Bloom, Joshua S.
dc.contributor.author Masci, Frank J.
dc.contributor.author Riddle, Reed
dc.contributor.author Smith, Roger
dc.coverage.spatial United States of America
dc.date.accessioned 2023-12-13T13:15:48Z
dc.date.available 2023-12-13T13:15:48Z
dc.date.issued 2023-11
dc.identifier.citation Healy, Brian F.; Coughlin, Michael W.; Mahabal, Ashish A.; Laz, Theophile J. du; Drake, Andrew; Graham, Matthew J.; Hillenbrand, Lynne A.; Roestel, Jan van; Szkody, Paula; Zielske, LeighAnna; Guiga, Mohammed; Hassan, Muhammad Yusuf; Hughes, Jill L.; Nir, Guy; Parikh, Saagar; Park, Sungmin; Purohit, Palak; Rebbapragada, Umaa; Reed, Draco; Wold, Avery; Bloom, Joshua S.; Masci, Frank J.; Riddle, Reed and Smith, Roger, "The ZTF source classification project: III. a catalog of variable sources", arXiv, Cornell University Library, DOI: arXiv:2312.00143, Nov. 2023.
dc.identifier.uri https://doi.org/10.48550/arXiv.2312.00143
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/9557
dc.description.abstract The classification of variable objects provides insight into a wide variety of astrophysics ranging from stellar interiors to galactic nuclei. The Zwicky Transient Facility (ZTF) provides time series observations that record the variability of more than a billion sources. The scale of these data necessitates automated approaches to make a thorough analysis. Building on previous work, this paper reports the results of the ZTF Source Classification Project (SCoPe), which trains neural network and XGBoost machine learning (ML) algorithms to perform dichotomous classification of variable ZTF sources using a manually constructed training set containing 170,632 light curves. We find that several classifiers achieve high precision and recall scores, suggesting the reliability of their predictions for 112,476,749 light curves across 40 ZTF fields. We also identify the most important features for XGB classification and compare the performance of the two ML algorithms, finding a pattern of higher precision among XGB classifiers. The resulting classification catalog is available to the public, and the software developed for SCoPe is open-source and adaptable to future time-domain surveys.
dc.description.statementofresponsibility by Brian F. Healy, Michael W. Coughlin, Ashish A. Mahabal, Theophile J. du Laz, Andrew Drake, Matthew J. Graham, Lynne A. Hillenbrand, Jan van Roestel, Paula Szkody, LeighAnna Zielske, Mohammed Guiga, Muhammad Yusuf Hassan, Jill L. Hughes, Guy Nir, Saagar Parikh, Sungmin Park, Palak Purohit, Umaa Rebbapragada, Draco Reed, Avery Wold, Joshua S. Bloom, Frank J. Masci, Reed Riddle and Roger Smith
dc.language.iso en_US
dc.title The ZTF source classification project: III. a catalog of variable sources
dc.type Article
dc.relation.journal arXiv


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account