Abstract:
The use of biomolecules toward environmental analysis provides impressive advantages in terms of selectivity and efficiency. Proteins have served as the classical choice of biomolecules in this regard partly due to their natural function as strong and specific binding agents. Nevertheless, biomolecules are usually considered unsuitable for large-scale environmental applications due to their fragility and cost. In this chapter, we first examine the emergence of nucleic acid based nanotechnology in the context of environmental analysis. Notably, the development of nucleic acid aptamers, aptazymes, and nano-architectures has facilitated application as both a receptor in biosensors as well as versatile scaffolds for engineering functional constructs. Further, we present a proof-of-concept of nucleic acid based nanoconstructs as a reusable adsorbing agent. We have developed nucleic acid three-way junction-based matrices that are capable of retrieval and reuse of a commonly used staining agent. Immobilization of the nucleic acid architectures on magnetic nanoparticles enables their reuse across samples. Inherent sophistication of biomolecules in general and nucleic acid based constructs, in particular, supports their deployment in specialized applications at a smaller scale pertinent to individual human activity. The perspective presented in this chapter is expected to encourage environmental engineering in distinctive and atypical contexts.